An adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidification

نویسندگان

  • J. Rosam
  • P. K. Jimack
  • A. M. Mullis
چکیده

Using state-of-the-art numerical techniques, such as mesh adaptivity, implicit time-stepping and a non-linear multi-grid solver, the phase-field equations for the non-isothermal solidification of a dilute binary alloy have been solved. Using the quantitative, thin-interface formulation of the problem we have found that at high Lewis number a minimum in the dendrite tip radius is predicted with increasing undercooling, as predicted by marginal stability theory. Over the dimensionless undercooling range 0.2-0.8 the radius selection parameter, σ*, was observed to vary by over a factor of 2 and in a non-monotonic fashion, despite the anisotropy strength being constant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Implicit, Adaptive Grid Methods for Phase-Field Simulation of Solidification in Pure Metals and Alloys

A fully-implicit numerical method based upon adaptively refined meshes for the simulation of pure materials and binary alloy solidification in 2D is presented. In addition we combine a second-order fully-implicit time discretisation scheme with variable steps size control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely used fully-ex...

متن کامل

Towards a 3-Dimensional Phase-Field Model of Non-Isothermal Alloy Solidification

We review the application of advanced numerical techniques such as adaptive mesh refinement, implicit time-stepping, multigrid solvers and massively parallel implementations as a route to obtaining solutions to the 3-dimensional phase-field problem for coupled heat and solute transport during non-isothermal alloy solidification. Using such techniques it is shown that such models are tractable f...

متن کامل

A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification

A fully-implicit numerical method based upon adaptively refined meshes for the simulation of binary alloy solidification in 2D is presented. In addition we combine a second-order fully-implicit time discretisation scheme with variable steps size control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely used fully-explicit methods, wit...

متن کامل

On the fully implicit solution of a phase-field model for binary alloy solidification in three dimensions

A fully implicit numerical method, based upon a combination of adaptively refined hierarchical meshes and geometric multigrid, is presented for the simulation of binary alloy solidification in three space dimensions. The computational techniques are presented for a particular mathematical model, based upon the phase-field approach, however their applicability is of greater generality than for t...

متن کامل

Advanced numerical methods for the simulation of alloy solidification with high Lewis number

A fully-implicit numerical method based upon adaptively refined meshes for the thermal-solutal simulation of alloy solidification in 2D is presented. In addition we combine an unconditional stable second-order fully-implicit time discretisation scheme with variable step size control to obtain an adaptive time and space discretisation method, where a robust and fast multigrid solver for systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008